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Abstract

Clostridium difficile(C. diff ) is a highly contagious endospore form-

ing bacterium that is transferred through physical contact with an

infected surface. Symptoms range from diarrhea to life-threatening

colitis and is most commonly acquired in a hospital setting where

antimicrobials have been administered. Increased mortality in C.

diff infected patients with renal failure comorbidities has appeared

in the literature as early as 1998 [1]. In this study, we analyze C.

diff trends from 2001-2014 using the National Inpatient Sample. We

also assess the risk of 30, 60, and 90 day readmissions in patients

with comorbid C. diff infection and renal failure conditions using the

Nationwide Readmissions Database from 2010-2014.
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Chapter 1

Introduction

1.1 Overview of Clostridium difficile

Clostridium difficile, or C. diff Infection (CDI) - has been an increasing concern

in the last two decades among healthcare providers. The organism itself is a

resilient endospore-forming bacterium, resistant to heat, acid, and antibiotics,

and can survive on surfaces for up to 5 months, if proper sanitation is not carried

out [2].

In past years, the most common CDI cases occurred in elderly patients, 65

years or older, who were admitted as inpatients in a hospital or nursing home

setting, and given antimicrobial therapy. In fact, it has become the most frequent

nosocomial (hospital-acquired) disease, surpassing methicillin-resistant Staphy-

lococcus aureus (MRSA) [3].

Antimicrobials deplete the healthy gut flora of the intestines which protect

against harmful organisms like C. diff [4].

Adding to the complexity of the situation, C. diff carriers can remain asymp-

tomatic, making them stealth transporters and allowing the disease to propagate

undetected until it is too late.

In 2013, the CDC estimated that around 250,000 Americans contracted CDI

in a single year, causing 14,000 deaths. That estimate was later updated to half

a million in 2015, causing 15,000 deaths [5, 6]. Another study puts that number

even higher, at 29,000 deaths in 2011.

CDI is also costly. The CDC estimates that in 2008, it cost acute healthcare

facilities alone more than $4.8 billion. The mean cost of an incident of CDI was

found to be $11,498 (inflation adjusted to 2008 dollars) and as high as $15,397

when CDI was hospital acquired [7].
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1.2 Overview of Renal Failure

While CDI is a singular diagnosis category, renal failure falls into one of two um-

brella categories, acute kidney injury (AKI), and chronic kidney disease (CKD).

AKI is further broken into subcategories. Acute tubular necrosis is the most

common form of AKI. Other subcategories include renal cortical necrosis, renal

medullary necrosis, lesions, and a category for unspecified AKI.

When evaluating the effect of renal failure on outcome variables, we first need

to understand how renal failure is classified.

Chronic kidney disease is broken into categories based on stages that are cal-

culated using one of the estimated Glomerular Filtration Rate (GFR) equations.

The equations model kidney health as a function of age, sex, race, and blood

creatinine, a waste product that is produced from normal muscle use. One of

two formulas may be used, the Modification of Diet in Renal Disease (MDRD)

formula [8], or the newer Chronic Kidney Disease Epidemiology Collaboration

(CKD-EPI) formula [9]. The models are included below to show the roles that

age, sex, and race play in the diagnosis of CKD.

1.2.1 The MDRD and CKD-EPI Equations

Patients are classified as having a particular CKD stage by testing their Glomeru-

lar Filtration Rate (GFR) using one of two equations. Both equations measure

the creatinine in a patient’s blood with a serum creatinine test. Creatinine is a

waste product produced by normal muscle wear and tear.

The MDRD equation encodes sex and race (African American or not) and

does not rely on height or weight due to using the geneally accepted mean surface

area of the average adult, 1.73m2. GFR is expressed in units of mL/minute/1.73m2.

GFR = 175× Scr−1.154 × Age−0.203 × 0.742 · I(F)× 1.212 · I(AA) (1.1)

where:

� F is female sex

� AA is African American race

� I is an indicator function that returns 1 if true, the reciprocal of the pre-

ceding term if false (thereby making the preceding term 1)

2



CKD Stage Description GFR Kidney Function ICD-9-CM
1 Normal function 90+ 90-100% 585.1
2 Mild loss 60-89 60-89% 585.2
3 Mild to severe 30-59 30-59% 585.3
4 Severe 15-29 15-29% 585.4
5 Kidney failure 15 or less 15% or less 585.5

Table 1.1: GFR classifications for stages of Chronic Kidney Disease

� Scr is serum creatinine in mg/dL

The CKD Epidemiology (CKD-EPI) was a single equation selected out of

a large number of candidate equations, that uses transformations of continuous

variables and additional variables and interactions. Serum creatinine is modeled

as a 2-slope spline with sex-specific knots at 0.7 mg/dL for women and 0.9 mg/dL

for men. It was shown to outperform the MDRD, with lower bias and increased

precision. [9, 10]

GFR = 141×min
(
Scr
κ
, 1

)α
×max

(
Scr
κ
, 1

)−1.209

× 0.993Age × 1.018 · I(F)× 1.159 · I(AA)

(1.2)

where:

� κ is 0.7 for females and 0.9 for males

� α is -0.329 for females and -0.411 for males

1.2.2 Classifying Chronic Kidney Disease

Once the GFR is calculated using either the MDRD or the CKD-EPI formulas,

patients can be placed into one of five categories. Table 1.1 shows the GFR

rating along with the stage of CKD and the level of kidney function. 585 is used

in the ICD-9-CM coding system to indicate CKD. If the level is known, a more

specific coding is used. 585.1-585.5 indicate CKD Stage 1 through 5. 585.6 is

used for end stage renal disease (dialysis or transplant), and 585.9 is used if the

level is unspecified.
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1.2.3 End stage renal disease

When CKD reaches Stage 5, it is considered end stage renal disease (ESRD).

Dialysis or a kidney transplant is needed to stay alive. The most common causes

of ESRD are diabetes and high blood pressure. Risk of ESRD also increases with

age.

1.3 Index Admissions and Readmissions

An inpatient admission begins on the first day a patient is admitted to a hospital

under a doctor’s order. The last day before discharge is the last inpatient day

[11].

Readmissions are subsequent admissions from a given index admission within

a specified time interval. Methods and inclusion/exclusion criteria for determin-

ing an index admission and readmissions vary.

1.3.1 Readmissions and the ACA

A 2014 study done by the Agency for Healthcare Research and Quality (AHRQ)

under the Healthcare Cost and Utilization Project (HCUP) found hospital read-

missions accounted for about $41.3 billion in hospital costs [12].

Under the Readmission Reduction Program, a provision of the Affordable

Care Act, Hospitals face penalties on Medicare payments if they exceed cer-

tain 30-day readmission standards. While the American Hospital Association

strongly opposes the measure, citing a lack of control over the chain of events

that can lead to readmission [13, 14], the Affordable Care Act is still the rule of

law, and hospitals must seek to reduce readmissions in order to avoid penalties.

For this reason, readmission statistics are an important key metric for hos-

pitals interested in optimizing their operations. Using large surveys, researchers

are able to determine trends and end results, but not necessarily causes, of read-

missions. Still, high level trends can point healthcare providers in a direction

where they can more efficiently focus their attention. Studies like this one fo-

cus on narrow cases where a better understanding can contribute to reduced

readmissions and an overall reduction in penalties.
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1.3.2 Readmission measures

The Centers for Medicare & Medicaid Services (CMS) sets guidelines that hospi-

tals must follow to avoid penalization on Medicare payments. The CMS measures

”excess readmissions” as a ratio of predicted-to-expected readmissions and each

hospital’s relative performance, based on a 30-day risk standardized measure.

All-cause unplanned readmissions to the same or another applicable acute care

hospital, occurring within 30 days - for any reason, regardless of principal di-

agnosis - from the index admission are counted in this measure. Some planned

readmissions are not counted [15].

For fiscal years 2013 to 2018, the following formula is used to calculate the

Payment Readjustment Factor (PRF):

PRF = 1−min
(

0.03,
∑
dx

Payment(dx) ·max
(
(ERR(dx)− 1.0), 0

)
All payments

)
(1.3)

Where dx is one of six measure cohorts:

� acute myocardial infarction (AMI)

� heart failure (HF)

� pneumonia

� chronic obstructive pulmonary disease (COPD)

� coronary artery bypass graft (CABG) surgeries

� elective primary total hip and/or total knee arthroplasty (THA/TKA)

ERR is a hospital’s ratio of predicted-to-expected readmissions against dx,

and payment refers to base operating DRG payments. An ERR greater than 1.0

indicates that a hospital performed worse than the average performance of all

hospitals. [16, 17].

1.4 Overview of the data

The data obtained for this study comes from the Agency for Healthcare Research

and Quality (AHRQ), under the Department of Health and Human Services

(DHHS). ARHQ sponsors the Healthcare Cost and Utilization Project (HCUP),

5



a collection of databases including the Nationwide Inpatient Sample (NIS) and

the Nationwide Readmissions Database (NRD) [18]. For this study, we obtained

years 2001-2014 of the NIS, and 2010-2014 of the NRD.

Both datasets are based on complex survey designs. The Primary Sampling

Units (PSUs) are hospitals, stratified by region, teaching status, and bedsize.

Weights are calculated for each discharge which are used to ”map” the sample

back to an unbiased representation of the survey population [19].

1.4.1 The Nationwide Inpatient Sample (NIS)

The Agency for Healthcare Research (AHRQ) has been conducting the National

(later renamed to ”Nationwide”) Inpatient Sample since 1988, as part of the

Healthcare Cost and Utilization Project (HCUP). It estimates a weighted 35

million hospitalizations per calendar year using around 7-8 million unweighted

discharges per year. It is the largest database of its kind in the United States

[20].

1.4.2 The Nationwide Readmissions Database (NRD)

Similar to the NIS, the NRD tracks hospitalizations. In addition, it tracks pa-

tients across admissions, using an ID key, an admission reference date, and a

length of stay for each admission. This allows analysts to track anonymized

readmission cases. The NRD tracks around 14 million unweighted patients,

when weighted, estimates about 36 million weighted patients across admissions

per calendar year [21].

1.4.3 Limitations

Working on such a rich dataset does not come without limits. Prior to obtaining

the NIS or NRD, analysts must take the HCUP Data Usage Agreement (DUA).

At a high level, HCUP requires that researchers protect individual identities.

Cell sizes (groups of people) where n ≤ 10 may not be reported. Attempting

to identify individual patients or health care providers through vulnerability or

penetration testing, or any other means, is prohibited. For instance, if an an-

alyst noticed that a certain hospital used a particular coding scheme that was

unique to that hospital and could be used to identify aspects of a patient, the
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analyst may not use this information. Furthermore, probing for such vulnerabil-

ities is prohibited as well. Publication of any methodology that could identify

individuals is prohibited.

Furthermore, HCUP data may only be used for research, not for commercial

or competitive purposes. Institutions may not be contacted to verify any of the

data within the HCUP datasets either.

For the above reasons, the data may also not be posted online, and anyone

wishing to work with or even see the data must take the DUA class and sign the

agreement [22].

In a couple of recent publications, Khera and Krumholz expanded on these

base requirements and offered a checklist [23] for analysts to follow as they work

with the NIS. In a followup study, they found only 10.5% (95% CI, 4.7%-16.4%)

of published research projects based on NIS data followed all of the guidelines

[24].

Listed below are the guidelines from Khera and Krumholz, and notes on how

we have conformed to them.

� Section A: Research Design

�3 Does the study consider that it can only detect disease conditions,

procedures, and diagnostic tests in hospital settings?

Yes, we make no assumptions about events occurring outside

of the hospital setting.

�3 Does the study acknowledge that it includes encounters, not individ-

ual patients?

Yes, all of our assumptions are made upon the basis of inpa-

tient discharges and readmissions, not individuals.

�3 Does the study avoid diagnosis/procedure-specific volume assessments

for units that are not part of the sampling frame of the NIS, and are

therefore not representatively sampled, including

– geographic units, like U.S. states

– healthcare facilities (after 2011)

– individual healthcare providers?

Yes, we only make assessments at the national level.

� Section B: Data Interpretation
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�3 Does the study attempt to identify disease conditions or procedures

of interest using administrative codes or their combinations that have

been previously validated?

Yes, when checking for renal failure, the comorbidity indica-

tors (renlfail, cm renlfail) were used before assessing ICD-

9-CM codes.

�3 Does the study limit its assessments to only in-hospital outcomes,

rather than those occurring after discharge?

Yes, the only outcome assessments were readmission status

and mortality (died), both of which are in-hospital events.

�3 Does the study distinguish complications from comorbidities or clearly

note where it cannot?

Yes, renal failure comorbidities were distinguished using the

the comorbidity indicators (renlfail, cm renlfail). CDI while

most often a complication, cannot usually be distinguished

between complication and comorbidity however.

� Section C: Data Analysis

�3 Does the study clearly account for the survey design of the NIS and

its components -clustering, stratification, and weighting?

Yes, the R survey package was used to account for survey

design.

�3 Does the study adequately address changes in data structure over time

(for trend analyses)?

Yes, since we are only doing national-level assessments, and

we are not using ICD-10-CM codes in the 2015 datasets, we

don’t need to worry about the changes in the survey design.

1.4.4 Goals

The goals of this study are to evaluate trends in CDI and renal failure over the

period of 2001-2014 using the NIS, and to determine risk factors of readmission

for CDI patients over the period of 2010-2014 using the NRD.
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Chapter 2

Methods

All analyses were done in R version 3.4.3 (2017-11-30) on an x86 64-pc-linux-gnu

(64-bit) running Ubuntu 16.04.4 LTS. Complex survey designs of the NIS and

NRD were accounted for using the survey package, version 3.33-2 [25]. Data

were stored and retrieved in MonetDB using MonetDBLite version 0.5.1 [26].

2.1 Data source

Years 2001-2014 of the NIS, as well as years 2010-2014 of the NRD were provided

courtesy of Creighton University School of Medicine. Both datasets originate in

comma-separated variables (CSV) format.

The NIS covers between 7-8 million unweighted patients per calendar year,

resulting in file sizes around 3 GB on average, totaling around 43 GB of raw

ASCII text.

$ l −ha NIS* | awk '{ pr in t $5 , $9 } '
2 .7G NIS2001 . csv
2 .9G NIS2002 . csv
3 .0G NIS2003 . csv
3 .1G NIS2004 . csv
3 .1G NIS2005 . csv
3 .1G NIS2006 . csv
3 .4G NIS2007 . csv
3 .4G NIS2008 . csv
3 .5G NIS2009 . csv
3 .6G NIS2010 . csv
3 .7G NIS2011 . csv
2 .6G NIS2012 . csv
2 .6G NIS2013 . csv

9



2 .8G NIS2014 . csv

Listing 2.1: Showing file sizes for the NIS dataset from 2001-2014

The NRD is normalized into 4 different files, 3 discharge-level files and a

hospital-level file.

The Core file contains data elements necessary for readmission analysis. The

Severity files contain data related to the severity of the patients’ conditions,

including, for our purposes, comorbidity flags. The DX PR file (diagnoses and

procedures) file contains ICD-9-CM codes and other fields related to diagnoses

and procedures. Finally, the hospital file contains information on the hospital

characteristics.

The NRD is a record of around 14 million unweighted admissions per calendar

year with identifiers that allow analysts to track readmissions from a particular

index event.

$ l −ha NRD*/* .CSV | awk '{ pr in t $5 , $9 } ' | sed −e ' s / /\ t / '

5 .0G NRD2010/NRD 2010 Core V2 .CSV
3 .4G NRD2010/NRD 2010 DX PR GRPS V2 .CSV
88K NRD2010/NRD 2010 Hospital V2 .CSV
1 .2G NRD2010/NRD 2010 Severity V2 .CSV
5 .1G NRD2011/NRD 2011 Core V2 .CSV
3 .4G NRD2011/NRD 2011 DX PR GRPS V2 .CSV
87K NRD2011/NRD 2011 Hospital V2 .CSV
1 .2G NRD2011/NRD 2011 Severity V2 .CSV
4 .9G NRD2012/NRD 2012 Core V2 .CSV
3 .3G NRD2012/NRD 2012 DX PR GRPS V2 .CSV
82K NRD2012/NRD 2012 Hospital V2 .CSV
1 .1G NRD2012/NRD 2012 Severity V2 .CSV
5 .2G NRD2013/NRD 2013 Core .CSV
3 .4G NRD2013/NRD 2013 DX PR GRPS .CSV
92K NRD2013/NRD 2013 Hospital .CSV
1 .1G NRD2013/ NRD 2013 Severity .CSV
6 .6G NRD2014/NRD 2014 Core .CSV
4 .1G NRD2014/NRD 2014 DX PR GRPS .CSV
98K NRD2014/NRD 2014 Hospital .CSV
1 .2G NRD2014/ NRD 2014 Severity .CSV

Listing 2.2: Showing file sizes for the NRD dataset from 2010-2014

This totals to over 50 GB of raw ASCII text.
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2.1.1 Persistence

There are numerous ways to handle a dataset of this size. If we know exactly

what unique codes we want, we could simply grep for them. However, this isn’t

scalable and we would not be able to calculate population proportions.

For this project, we imported the data into MonetDBLite, an in-process

version of MonetDB. We chose MonetDB, because it fits well in the academic

space, being open source with strong R integration and good community support.

It also fits well in the data warehousing space, being a pioneer in column-store

technologies.

Column-store databases partition each column as an array, making data re-

trieval extremely fast when only a subset of the columns need to be loaded into

memory [27].

2.1.2 Diagnosis and procedure codes

The International Classification of Diseases, Ninth Revision, Clinical Modifica-

tion (ICD-9-CM) is based on the World Health Organization’s Ninth Revision,

International Classification of Diseases (ICD-9). It is the coding standard for

diseases and procedures used in the NIS and NRD up to October, 2015, when

HCUP upgraded to ICD-10-CM.

Although we had access to the 2015 NRD data, it was not used due to the

added complexity of accounting for ICD-10-CM changes, as well as not having

2015 data for NIS, which would have caused inconsistencies in trend analysis.

With the acknowledgement that ICD-9-CM codes are not perfect [28], they

are still the best thing we have for longitudinal epidemiological studies on a

large scale. The ICD-9-CM diagnosis codes are stored in fields dx1, dx2, . . .

dx30. dx1 is the principal diagnosis, or the diagnosis primarily responsible for

the patient being admitted. This is not always clear cut, as patients often have

multiple diseases, and any one could be responsible for their admission, so in

these cases, they are often coded with consideration to cost and reimbursement.

These were queried for code 00845 (Intestinal infection due to Clostridium

difficile). The decision not to look exclusively at dx1, the principal diagnosis, was

deliberate, due to the nature of CDI. Patients rarely contract CDI independently.

It is typically contracted while in a hospital setting while being treated for a

separate disease.
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ICD-9-CM Code Description
584 Acute kidney failure
584.5 Acute kidney failure with lesion of tubular necrosis convert
584.6 Acute kidney failure with lesion of renal cortical necrosis convert
584.7 Acute kidney failure with lesion of renal medullary [papillary] necrosis
584.8 Acute kidney failure with lesion of with other specified pathological lesion in kidney
584.9 Acute kidney failure, unspecified
585 Chronic kidney disease (ckd)
585.1 Chronic kidney disease, Stage I
585.2 Chronic kidney disease, Stage II (mild)
585.3 Chronic kidney disease, Stage III (moderate)
585.4 Chronic kidney disease, Stage IV (severe)
585.5 Chronic kidney disease, Stage V (end stage)
585.6 End stage renal disease
585.9 Chronic kidney disease, unspecified
586 Renal failure, unspecified

Table 2.1: ICD-9-CM renal failure codes

To complicate matters, ICD-9-CM codings are not an exact science, and

are often done based on cost and seriousness of comorbid conditions. Coders

must use their judgement for determining a principal diagnosis when comorbid

conditions are present [29]. For this reason, we simply queried for the presence

of the condition on any diagnosis field.

The same was done for renal failure codes, shown in table 2.1.

For trend analysis, the CDI and renal failure selections were joined. This

provided full samples of CDI and renal patients, as well as patients with both.

2.1.3 Determining index admissions and readmissions

Unlike the NIS, the NRD allows tracking patients across hospital visits within a

given calendar year. The field nrd visitlink provides a key that identifies a sin-

gle patient across multiple visits. To determine temporality, a length of stay field

(los) is provided for each visit, as well as a reference date, nrd daystoevent. To

ensure anonymity, a randomly selected date is chosen for each patient. nrd daystoevent

then references the random date and lists the days from the epoch date. This

way, no precise date can be determined, thereby protecting patient privacy, while

providing the researcher with the data he or she needs.

The NRD leaves readmission determination up to the analyst. First an index

event must be chosen. We selected all cases of CDI (ICD-9-CM code 00845)
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and retrieved all unique nrd visitlink identifiers. Then a second query was

performed retrieving all events for the nrd visitlink identifiers.

We then grouped the cases first by nrd visitlink, then chronologically.

Then, we scanned for the first occurrence of a CDI event (ICDM-9-CM code

00845) and marked it as the index event. All information from the index event

was stored in a ”patient profile” object. The remaining patient admissions, if

any, were scanned. If the event contained a CDI identifier and fell within the

given readmission day window (30, 60, and 90 days, separately), the event was

considered a readmission and the number of readmissions were stored. If the

patient died on a readmission, that was also stored. If the secondary event fell

outside of the readmission window, it was considered another index event, and

the process started over. The state diagram is shown in Figure 2.1.

The following additional rules were applied for determining index events for

d -day readmissons, where d ∈ {30, 60, 90}:

1. For years 2010-2014: (1 ≤ DMONTH ≤ 12− ceil(d/30))

We needed to cut off index events with enough time to determine if there

was a readmission, since only calendar years can be analyzed.

2. DIED 6= 0

A death on index does not allow for readmission.

3. LOS > 0

A length of stay equal to zero represents transfers and same-day stays that

were combined which represents a more complex type of care [30].

4. AGE > 0

About 70% of infants under one year of age carry C. diff without showing

signs or symptoms of infection [4].

2.1.4 Choosing features

To determine renal failure comorbidities, the cm renlfail flag was first used,

and then more specific ICD-9-CM codes were identified. Acute kidney failure, or

acute kidney injury (AKI) were grouped by all sub-category codes into a single

AKI category. This included codes 584, 584.5, 584.6, 584.7, 584.8, and 584.9

(see Table 2.1).
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Chronic kidney disease (CKD) stages were individually analyzed, but unspec-

ified or unknown CKD cases were grouped, (ICD-9-CM codes 585 and 585.9).

Additionally, we considered hospital characteristics as independent factors,

including hospital control (Government, nonfederal; Private, non-profit; Pri-

vate, invest-own), urban/rural designation (9 categories from smallest to largest),

teaching designation, and bedsize.

Hospital urban/rural designations contained 9 categories 1 being the largest

and 9 being the smallest. These were reversed in order to have a meaningful

effect in the regression.

Sex was also included in the regression.

Patients’ age is included in the eGFR formula, and as such, would be a

confounding variable, so it was not included in the regression.

2.2 Statistical analysis

Descriptive and inferential statistics were done using the NIS and NRD complex

survey design, supplying hospid as the clusters, nis stratum as the strata, and

discwt as the weighting. Lonely primary sampling units (PSU) - in our case,

hospitals - were excluded using options(survey.lonely.psu="remove") [31].

The primary readmission analysis was done with multivariable logistic regres-

sion to determine the effect of the covariates and confounding variables on the

likelihood of being readmitted with CDI under the three readmission windows,

30, 60, and 90 days. Logistic regression is used throughout the medical literature

to explain effects on a binary outcome variable. At its core is a linear model that

is both effective and easy to explain.

The odds are given by

Pr(readmitted) =
eβX

1− eβX
(2.1)

where X is a matrix consisting of a constant (slope), and the feature variables

shown in Table 2.2. The full list of regression coefficient estimates are provided

in Appendix A (Tables A.1, A.2, and A.3).

Note the following:

� hosp hcontrl govt and hosp hcontrl priv np were compared against a

baseline of hosp hcontrl priv invest own, which represents a hospital’s

control/ownership of private, investor owned (proprietary)
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� hosp urcat4 is a discrete variable from 1 to 4, representing the smallest

to largest areas. In this case, an increasing integer size corresponds to an

increasing metropolitan area size. The original variable used a descending

order, where 1 was the largest and 4 was the smallest, so we reversed

the order to make the variable naturally meaningful without the need for

dummy variables

� hosp ur teach metro and hosp ur teach metro teaching were compared

against a baseline of hosp ur nonmetro, which did not distinguish between

teaching and non-teaching because rural hospitals were rare

� hosp bedsize is a discrete variable from 1 to 3, indicating small, medium,

and large hospital bedsizes

� female is a binary variable, 0 is male, 1 is female

� acute kidney failure grouped all forms of AKI. The baseline is not hav-

ing any form of AKI

� chronic kidney disease2-6 and chronic kidney disease unk are the

various stages of CKD, compared against a baseline of CKD Stage 1 (mostly

healthy)

� renal failure unspecified was compared against not having any un-

specified renal failure

Age was not included, because it is factored in to the CKD stage classification

in the GFR equations, 1.1 and 1.2.

The model was fitted independently on each year’s data. Another approach

would be to include the years as independent variables and attempt to fit the

entire dataset. Because the dataset is very large, a single all-year fit was some-

what impractical due to hardware resource limitations. From a practical aspect,

we are able to capture more nuance in modeling individual years, given each

year is a separate independent data set, and medical trends do change over time.

Fitting 5 years of data all at once is likely to miss smaller subtleties, such as

increases or decreases in particular coefficient estimates over time.

Variance estimation was done using the non-parametric method of Jackknife

Repeated Replication (JRR), specifically the JKn approach, which is the default
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NRD variable Description
hosp hcontrl govt Hospital’s ownership/control - Government, nonfederal
hosp hcontrl priv np Hospital’s ownership/control - Private, not-profit

hosp urcat4 Urban-rural categorization (1-4, smallest to largest)
hosp ur teach metro Hospital teaching status - metro, non-teaching
hosp ur teach metro teaching Hospital teaching status - metro, teaching
hosp bedsize Hospital bedsize (1-3, small to large)
female Sex, binary, female
acute kidney failure AKI, all types
chronic kidney disease2 CKD Stage 2
chronic kidney disease3 CKD Stage 3
chronic kidney disease4 CKD Stage 4
chronic kidney disease5 CKD Stage 5
chronic kidney disease6 ESRD
chronic kidney disease unk CKD, unknown
renal failure unspecified Renal failure, unspecified

Table 2.2: ICD-9-CM renal failure codes

in the survey package. Details on JKn and other approaches to variance esti-

mation can be found in [19]. Replication methods have shown better precision

and reduced bias compared to Taylor Series Linearization [32, 33].

All charts were done with the ggplot2 package [34], and the coefficient tables

in Appendix A were done with the stargazer package [Hlavac2018].

All code for this project can be found on the author’s GitHub account at

[35]. A journal has also been kept, documenting the research process, which can

be found on the author’s website at [36].
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Figure 2.1: State diagram for determining what constitutes an index admission
and a subsequent readmission. Additional rules include cutting off index events
by October, November, or December, depending on whether we are looking for
90, 60, 30 day readmissions, respectively; filtering out deaths on index events;
lengths of stay that included transfers and same-day stays; and infants less than
1 year of age, where C. diff bacteria are common but the patient shows no symp-
toms.
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Chapter 3

Results

3.1 Trends

Over the 14 year period, from 2010 - 2014, the proportion of inpatients with

CDI increased from 0.003998292% (95% CI, 0.003773284%-0.004236661%) in

2001, roughly 141,540 (95% CI, 133,574-149,978) cases, to 0.01023635% (95%

CI, 0.01004522%-0.01043108%) in 2014, or 362,367 (95% CI, 355,601-369,260)

cases - a difference of about 0.006238055%, or 220,827 people.

In Figures 3.1 and 3.2, we can see the median age for inpatient CDI has been

lowering over the years. In fact, the entire distribution of CDI cases by age is

becoming less left-skewed and more mesokurtic indicating a trend toward a more

normal distribution (Figure 3.3).

Figure 3.4 shows the median age of CDI lowering from 73 years old in the

mid-2000s, to about 68 years old in 2014. The ESRD distribution over age

(shown in Figure 3.6) does not seem to have changed much since the ICD-9-CM

coding standards were changed in 2005 to require more specific identifiers for

renal failure patients.

Renal failure patients as a whole have become a very significant proportion

of the inpatient population, far outpacing CDI, as shown in Figure 3.5.

We can also separate the trends over time by age groups, broken down into

5-year buckets. Figure 3.7 shows more interesting trends. Notably, nearly every

age group is increasing in the number of CDI cases, except the 75-90 year groups,

which appear to be on something of a downward trend. The 50-75 year group

are showing steady increases and are poised to take the lead on the number of

CDI occurrences.

Lastly, we look at the differences in males and females. Figure 3.8 shows that

women are, on average, 1.397 times more likely to contract CDI than males.
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Figure 3.1: CDI trends show a somewhat linearly increasing trend. If we extrap-
olate to 2018, we have a rough idea of the proportion of the inpatient population
we can expect to be diagnosed with CDI.
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Figure 3.2: CDI is trending into younger generations in recent years.
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Figure 3.3: The age distrubution of CDI is becoming more platykurtic and less
left-skewed, indicating that the CDI is starting to infect younger people in recent
years.
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Figure 3.4: The median age for inpatient CDI admissions has been sharply de-
clined since 2006. The vertical bars indicate a 95% confidence interaval.
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Figure 3.5: Comparitively, CDI occurrences are not increasing as rapidly as renal
diseases. The sharp spikes from 2004-2006 were likely due to ICD-9-CM coding
requirements implemented in October of 2005.
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Figure 3.6: Age distribution for ESRD has remained consistent since ICD-9-CM
coding standards changed in October, 2005.
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Figure 3.8: Females are almost 1.4 times as likely to contract CDI than males.
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Figure 3.9: Mean coefficient estimates for the 30-, 60-, and 90-day readmission
models. Here, we capture the overall effects by averaging the 30-, 60-, and 90-
day readmission coefficients to get a more general idea of how the coefficients
are behaving across all readmissions. We only show only coefficients that were
statistically significant across all years. ESRD is highly significant and a strong
predictor of readmission.
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3.2 Readmission risk modeling

Dealing with 12 individual model fittings is cumbersome, particularly when try-

ing to convey results. But by modeling each readmission window and year in-

dividually, we can capture nuances exclusive to those subsets. For instance,

metropolitan and metropolitan teaching hospitals, and hospitals with larger bed-

sizes showed virtually no effect on readmissions for years 2010-2013. However,

in 2014 the coefficients were quite large and highly significant (see Tables A.1,

A.2, and A.3). If we had fit across all years, these may have showed up as some-

what significant and with less of an overall effect, and we would have missed

the point: Something happened in 2014 (see Appendix A, tables A.1, A.2, A.3)

causing larger metropolitan and metropolitan teaching hospitals to have a large,

significant effect on CDI readmissions.

Another benefit is clarity. We can more easily detect the signal from the

noise. Coefficients that show up on some years as statistically significant and

not at all on other years could just be noise. But a variable that shows up as

significant across all years is probably a signal.

The only coefficients that showed significance across all years at p < 0.01,

were AKI, CKD3, CKD4 (CKD Stages 3 and 4), CDK? (CKD unknown), and ESRD.

Furthermore, AKI and ESRD showed high significance at p < 0.001 across all

years. This indicates that there is a strong, consistent effect on readmission for

patients with CDI (see Appendix A, figures A.1, A.2, and A.3).

Because the the 30-, 60-, and 90-day readmission model coefficients were all

fairly similar, we can average the coefficients and get condensed estimates for a

general readmission model (Figure 3.9).
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Chapter 4

Discussion

4.1 Trends in CDI

4.1.1 Increasing infection rates

C. diff has been on the rise since the first reported major outbreak of ribotype

027, a hypervirulent strain, in 2004 [37]. Figure 3.1 shows the trend for CDI using

the data from 2001-2014, extrapolated through 2018. Over 1% of the inpatient

population in 2014 was diagnosed with CDI. If this trend continues linearly, we

can expect that number to increase to nearly 1.2% by 2018.

While the CDC found that around half a million people contracted CDI in

2015, about 150,000 of those were not documented in inpatient records, making

their inpatient estimate around 350,000 [6]. This is somewhat consistent with

our CDI linear model in Figure 3.1, which estimates about 391,293.4 (95% CI,

381,061.4-401,802.9) people in 2015, without having the data.

Using this model, we can expect C. diff infections to increase to 437,605.1

(95% CI, 427,984.2-447,380.8) hospital inpatients in 2018, and 468,479.6 (95%

CI, 459,266.1-477,766.1) in 2020, if the trend continues.

The proportion of C. diff infected individuals pales in comparison to those

with renal failure, however, which has also been on the rise, with nearly 10% of

patients coded with some form of acute kidney injury (ICD-9-CM codes 584, and

584.5-584.9) or chronic kidney disease (ICD-9-CM codes 585 and 585.1-585.5,

as well as 585.9) in 2014. AKI has risen by 0.6189396% per year on average.

While renal failure is a broad general category, even more specific codings,

including the most serious, End-Stage Renal Disease, showed much higher in-

patient rates than CDI. This suggests that CDI is not yet a national epidemic.

The trend should continue to be monitored, however, for drastic increases. If
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data for future years show the process breaking the previously linear trend, it

could be an indication that something has changed, such as a mutation in the

bacterium. Conversely, if infections make a downward turn, research should be

done to determine what methods have been effective in fighting the disease.

We can also separate the trends over time by age groups, broken down into

5-year buckets. Figure 3.7 shows more interesting trends. Notably, nearly every

age group is increasing in the number of CDI cases, except the 75-90 year groups,

which appear to be on something of a downward trend. The 50-75 year group

are showing steady increases and are poised to take the lead on the number of

CDI occurrences.

4.1.2 Infections at a younger age

We showed a trend in CDI moving into younger age groups. In 2001, the median

age for CDI was 73 (95% CI, 72-74). In 2014, it had dropped to 68 (95% CI, 68-

69). The age distribution of CDI becoming less left-skewed and more mesokurtic.

Whether it ever reaches the conditions of a normal distribution is doubtful, but

the trend is troubling. This means that where CDI once flourished only in the

elderly, it is beginning to move into younger demographics. This is consistent

with findings by Gupta and Khanna [3], and could partly account for the rise in

CDI numbers. If the bacterium can infect younger, healthier individuals, there

will be more opportunities for the disease to spread.

When breaking down the distribution into age buckets of 5 year intervals, we

see that the previously dominant 75+ age group where CDI once thrived, has

been on something of a decline since 2011, while all other age groups continue

to rise in CDI instances. The 70-75 age group is poised to become the most fre-

quently infected group, overtaking the 75-85 groups, which had vastly outpaced

all other groups in the mid-to-late 2000s.

It is often reported that increased age (60-65 years old or greater) is a risk

factor for CDI. There seems to be some disagreement on this in the literature,

and speculation on whether the increased risk is confounded by other acquired

comorbidities such as renal failure [38, 39].

4.2 Trends in renal failure

The distribution of ESRD has remained consistent since the coding changes in

2005. AKI and CKD have skyrocketed since the coding changes, with nearly
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20% of the inpatient population having some form of renal failure, this segment

represents a huge portion of inpatients.

Figure 3.6 shows the distribution of ESRD cases by age over time. This does

appear to be fairly normal and doesn’t appear to be changing drastically over

time.

4.3 CDI readmission risk factors

In their 2015 meta-analysis, Phatharacharukul, et. al. [40] found that the pooled

relative risk of C. diff -associated diarrhea in patients with CKD and ESRD were

1.95 (95% CI, 1.81-2.10) and 2.63 (95% CI, 2.04-3.38) respectively. This sug-

gests that CKD and ESRD pose a significant risk to recurrent C. diff -associated

diarrhea, and thus, potential for readmission.

Our findings support this, showing ESRD as a major predictor for CDI read-

missions over the surveyed years 2010-2014. AKI was also consistent across years,

though with a smaller effect. CKD stages varied as predictors, and only stages

3, 4, and ”unknown” were consistent across years. Perhaps the ”unknown” cases

err on the more sever side, but we have no methods for making that distinction.

CKD stage 5 showed some large effects, but was not consistent across years.

Finally, we saw hospital bedsize and metro/metro teaching categorization as

having a very large, highly significant effect in the year 2014 only. This suggests

something may have changed in either the healthcare system, or the NRD survey

in 2014 that contributed to increased readmissions.
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Chapter 5

Conclusion and future work

5.1 Conclusion

CDI is usually, by nature, a complication, acquired most often in a hospital

setting while being treated for other illnesses. The increasing proportion of renal

failure patients is bound to contribute to the growing CDI population.

The CDI population in general is trending toward younger people.

Various comorbidities, often associated with age, appear to be strong predic-

tors for CDI readmissions. In particular, ESRD has shown to be a consistently

strong predictor of CDI readmissions. In addition, AKI and CKD stages 2 and

3, as well as ”unknown” CKD stages were consistent predictors for CDI read-

mission.

5.2 Future work

Some larger questions arose from this study. Is the trend in CDI expanding into

younger members of the population due to community-acquired CDI, as shown

by Gupta and Khanna? [3] Are antibiotics still being used liberally, causing CDI

to spread into a broader population? More work should be done to investigate

these trends.

While it is frequently reported that increased age is a risk factor for CDI,

is it, in fact, due to age? Is it possibly due to other comorbidities that are, in

fact, linked to increased age? It is possible that age is merely correlated with

increased risk of CDI, not a cause. On its surface, this might not be practical.

Increased age is still a good predictor for CDI risk, but if it confounded by latent

factors, it would be more valuable to know what those factors are.
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On average, females were 1.397 times as likely to contract CDI. We did not

investigate the reasons for this. One possible contributing factor was that women

giving birth may be more susceptible to CDI, but verification of this line of

thinking is left to future work.

Mortality would also be an outcome variable of interest. If ESRD patients

contract CDI, what is their mortality rate? Findings at the National Kidney

Foundation showed mortality to be at 3.8% among CDI patients with ESRD,

compared to 1.46% for CDI patients without ESRD [41]. These findings should

be verified and updated with newer data.

We did not have the data to support treatment studies. Drugs such as Vanco

and Dificid have shown to be effective on CDI, but to what extent do each

contribute to reduced risk of readmission? Fecal microbiota transplants have

also shown to be extremely effective in patients with recurrent C. diff -associated

diarrhea. However, none of these treatment codes are available in either the NIS

or the NRD. Ideally, these would be factored into a future study to determine

the effects of treatments on readmission rates.

Other model fits may be of interest as well. A generalized additive model may

fit non-linear data more closely and provide more accurate coefficient estimates.

The survey package currently only supports generalized linear models at the

time of this writing, so this would need to be created to account for the complex

survey design.
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Appendix A

Regression Models
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Dependent variable:

readmitted (30-day readmission)

2010 2011 2012 2013 2014

hosp hcontrl govt 0.051 −0.135 −0.078 −0.032 0.056
(0.079) (0.095) (0.074) (0.066) (0.068)

hosp hcontrl priv np 0.084 −0.041 −0.021 −0.003 0.060
(0.072) (0.052) (0.053) (0.049) (0.045)

hosp urcat4 0.084∗ 0.101∗ 0.109∗∗ 0.105∗∗ −0.005
(0.041) (0.046) (0.040) (0.035) (0.035)

hosp ur teach metro −0.057 −0.138 −0.159 −0.075 0.198∗

(0.094) (0.111) (0.091) (0.088) (0.087)

hosp ur teach metro teaching 0.025 −0.040 −0.062 0.022 0.347∗∗∗

(0.103) (0.119) (0.097) (0.089) (0.084)

hosp bedsize −0.027 −0.019 −0.017 0.026 0.112∗∗∗

(0.029) (0.029) (0.026) (0.024) (0.025)

female −0.079∗ −0.109∗∗ −0.028 −0.079∗ −0.036
(0.038) (0.034) (0.034) (0.032) (0.031)

acute kidney failure 0.193∗∗∗ 0.224∗∗∗ 0.209∗∗∗ 0.147∗∗∗ 0.199∗∗∗

(0.046) (0.042) (0.042) (0.038) (0.036)

chronic kidney disease2 −0.033 0.064 0.511∗∗ 0.128 0.262
(0.224) (0.200) (0.167) (0.158) (0.148)

chronic kidney disease3 0.310∗∗∗ 0.325∗∗∗ 0.231∗∗ 0.262∗∗∗ 0.180∗∗

(0.082) (0.079) (0.074) (0.055) (0.061)

chronic kidney disease4 0.461∗∗∗ 0.259∗ 0.473∗∗∗ 0.281∗∗ 0.312∗∗∗

(0.122) (0.101) (0.101) (0.087) (0.085)

chronic kidney disease5 0.696∗∗ 0.407 0.574∗ 0.656∗∗ 0.490
(0.219) (0.260) (0.284) (0.225) (0.299)

chronic kidney disease6 0.650∗∗∗ 0.662∗∗∗ 0.715∗∗∗ 0.610∗∗∗ 0.719∗∗∗

(0.072) (0.073) (0.057) (0.058) (0.058)

chronic kidney disease unk 0.270∗∗∗ 0.178∗∗ 0.224∗∗∗ 0.213∗∗∗ 0.284∗∗∗

(0.059) (0.059) (0.061) (0.061) (0.066)

renal failure unspecified 0.681 0.597 0.652 −0.258 −2.402
(0.482) (0.429) (0.577) (0.535) (8.869)

Constant −1.649∗∗∗ −1.516∗∗∗ −1.616∗∗∗ −1.818∗∗∗ −2.114∗∗∗

(0.131) (0.119) (0.101) (0.097) (0.099)

Observations 35,103 38,412 38,847 39,737 40,115

Note: + p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001

Table A.1: Logistic regression coefficient estimates for 30-day readmissions, 2010-
2014. Each year was fit independently. Standard error reported below the esti-
mate in parentheses.

31



Dependent variable:

readmitted (60-day readmission)

2010 2011 2012 2013 2014

hosp hcontrl govt 0.026 −0.142∗ −0.092 −0.067 0.031
(0.076) (0.070) (0.073) (0.058) (0.062)

hosp hcontrl priv np 0.106 −0.020 −0.009 0.008 0.042
(0.066) (0.056) (0.054) (0.044) (0.042)

hosp urcat4 0.090∗ 0.108∗∗ 0.120∗∗ 0.121∗∗∗ −0.025
(0.041) (0.042) (0.039) (0.033) (0.033)

hosp ur teach metro −0.027 −0.137 −0.104 −0.042 0.317∗∗∗

(0.096) (0.099) (0.088) (0.086) (0.084)

hosp ur teach metro teaching 0.060 −0.059 −0.032 0.023 0.426∗∗∗

(0.106) (0.109) (0.094) (0.088) (0.085)

hosp bedsize −0.015 0.014 0.012 0.042 0.097∗∗∗

(0.030) (0.027) (0.027) (0.022) (0.021)

female −0.033 −0.114∗∗ −0.003 −0.064∗ −0.031
(0.035) (0.035) (0.032) (0.030) (0.028)

acute kidney failure 0.300∗∗∗ 0.281∗∗∗ 0.218∗∗∗ 0.174∗∗∗ 0.243∗∗∗

(0.038) (0.043) (0.041) (0.035) (0.035)

chronic kidney disease2 0.024 0.084 0.496∗∗ 0.080 0.252
(0.204) (0.186) (0.158) (0.145) (0.149)

chronic kidney disease3 0.388∗∗∗ 0.287∗∗ 0.198∗∗ 0.317∗∗∗ 0.184∗∗

(0.077) (0.088) (0.069) (0.058) (0.056)

chronic kidney disease4 0.474∗∗∗ 0.302∗∗ 0.462∗∗∗ 0.292∗∗∗ 0.366∗∗∗

(0.114) (0.110) (0.118) (0.081) (0.082)

chronic kidney disease5 0.603∗∗ 0.884∗∗∗ 0.507 0.611∗∗ 0.446
(0.224) (0.256) (0.270) (0.221) (0.300)

chronic kidney disease6 0.637∗∗∗ 0.682∗∗∗ 0.733∗∗∗ 0.671∗∗∗ 0.730∗∗∗

(0.065) (0.065) (0.061) (0.054) (0.058)

chronic kidney disease unk 0.229∗∗∗ 0.233∗∗∗ 0.217∗∗∗ 0.198∗∗∗ 0.271∗∗∗

(0.061) (0.060) (0.054) (0.058) (0.063)

renal failure unspecified 1.112∗ 0.447 0.575 −1.060 −1.099
(0.467) (0.403) (0.525) (0.618) (0.609)

Constant −1.543∗∗∗ −1.370∗∗∗ −1.520∗∗∗ −1.661∗∗∗ −1.846∗∗∗

(0.134) (0.108) (0.105) (0.089) (0.090)

Observations 31,859 34,992 35,435 36,460 36,784

Note: + p<0.1; ∗ p<0.05; ∗∗ p<0.01; ∗∗∗ p<0.001

Table A.2: Logistic regression coefficient estimates for 60-day readmissions, 2010-
2014. Each year was fit independently. Standard error reported below the esti-
mate in parentheses.
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Dependent variable:

readmitted

2010 2011 2012 2013 2014

hosp hcontrl govt 0.108 −0.073 −0.108 −0.041 −0.001
(0.083) (0.068) (0.071) (0.059) (0.062)

hosp hcontrl priv np 0.150∗ 0.038 −0.028 0.023 0.013
(0.071) (0.051) (0.058) (0.049) (0.042)

hosp urcat4 0.083 0.086∗ 0.103∗∗ 0.121∗∗∗ −0.016
(0.042) (0.037) (0.039) (0.033) (0.032)

hosp ur teach metro −0.0003 −0.065 −0.079 −0.029 0.297∗∗∗

(0.100) (0.096) (0.089) (0.087) (0.085)

hosp ur teach metro teaching 0.088 0.015 0.015 0.042 0.396∗∗∗

(0.109) (0.101) (0.095) (0.089) (0.086)

hosp bedsize −0.013 0.019 0.009 0.044∗ 0.079∗∗∗

(0.030) (0.025) (0.027) (0.022) (0.021)

female −0.052 −0.112∗∗ −0.003 −0.069∗ −0.029
(0.034) (0.037) (0.035) (0.031) (0.029)

acute kidney failure 0.306∗∗∗ 0.291∗∗∗ 0.202∗∗∗ 0.198∗∗∗ 0.260∗∗∗

(0.043) (0.041) (0.044) (0.036) (0.036)

chronic kidney disease2 0.055 0.049 0.452∗∗ −0.069 0.277
(0.210) (0.184) (0.164) (0.155) (0.155)

chronic kidney disease3 0.351∗∗∗ 0.245∗∗ 0.213∗∗ 0.331∗∗∗ 0.193∗∗∗

(0.078) (0.091) (0.070) (0.058) (0.057)

chronic kidney disease4 0.603∗∗∗ 0.323∗∗ 0.519∗∗∗ 0.357∗∗∗ 0.374∗∗∗

(0.122) (0.118) (0.119) (0.083) (0.084)

chronic kidney disease5 0.691∗∗ 0.761∗∗ 0.457 0.620∗∗ 0.472
(0.242) (0.274) (0.284) (0.233) (0.292)

chronic kidney disease6 0.726∗∗∗ 0.641∗∗∗ 0.725∗∗∗ 0.669∗∗∗ 0.757∗∗∗

(0.064) (0.066) (0.064) (0.054) (0.062)

chronic kidney disease unk 0.237∗∗∗ 0.225∗∗∗ 0.280∗∗∗ 0.196∗∗ 0.267∗∗∗

(0.068) (0.066) (0.058) (0.062) (0.066)

renal failure unspecified 1.074∗ 0.309 0.571 −0.398 −1.343
(0.463) (0.413) (0.573) (0.619) (0.775)

Constant −1.545∗∗∗ −1.389∗∗∗ −1.427∗∗∗ −1.641∗∗∗ −1.731∗∗∗

(0.138) (0.100) (0.107) (0.092) (0.087)

Observations 28,694 31,473 31,958 32,915 32,974

Note: + p<0.1; ∗ p<0.05; ∗∗ p<0.01; ∗∗∗ p<0.001

Table A.3: Logistic regression coefficient estimates for 90-day readmissions, 2010-
2014. Each year was fit independently. Standard error reported below the esti-
mate in parentheses.
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Figure A.1: Coefficient estimates for the 30-day readmission model. Here, we
only show coefficients that were statistically significant across all years. ESRD
is highly significant and a strong predictor of readmission.
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Figure A.2: Coefficient estimates for the 60-day readmission model. Here, we
only show coefficients that were statistically significant across all years. ESRD
is highly significant and a strong predictor of readmission.
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Figure A.3: Coefficient estimates for the 90-day readmission model. Here, we
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