So what’s the probability of your existing? It’s the probability of 2 million people getting together – about the population of San Diego – each to play a game of dice with trillion-sided dice. They each roll the dice, and they all come up the exact same number – say, 550,343,279,001.
A miracle is an event so unlikely as to be almost impossible. By that definition, I’ve just shown that you are a miracle.
Benazir, A. What are the chances of your coming into being? (2011)
Kingdom |
Bacteria |
Phylum |
Firmicutes |
Class |
Clostridia |
Order |
Clostridiales |
Family |
Clostridiaceae |
Genus |
Clostridium |
Species |
C. difficile |
\[ GFR = 175 \times S_{cr} - 1.154 \times \text{Age}^{-0.203} \times 0.742 \cdot I(\text{F}) \times 1.212 \cdot I(\text{AA}) \]
\[ GFR = 141 \times min\bigg(\frac{S_{cr}}{\kappa}, 1\bigg)^{\alpha} \times max\bigg(\frac{S_{cr}}{\kappa}, 1\bigg)^{-1.209} \\ \times 0.993^{\text{Age}} \times 1.018 \cdot \text{I}(\text{F}) \times 1.159 \cdot \text{I}(\text{AA}) \]
Stage | Description | GFR/Kidney Function |
---|---|---|
1 |
Normal function |
90+/90%+ |
2 |
Mild loss |
60-89/60-89% |
3 |
Mild to severe |
30-59/30-59% |
4 |
Severe |
15-29/15-29% |
5 |
Kidney failure (ESRD) |
15 or less/15% or less |
All-cause unplanned readmissions to the same or another applicable acute care hospital, occurring within 30 days - for any reason, regardless of principal diagnosis - from the index admission are counted in this measure. Some planned readmissions are not counted. HRRP
\[ \text{PRF} = 1 - min\bigg(0.03, \sum_{dx} \frac{\text{Payment}(dx) \cdot max\big((\text{ERR}(dx) - 1.0), 0\big)}{\text{All payments}}\bigg) \]
Sampling Plan | Design-based inference | Model-based inference |
---|---|---|
Probability sample |
A |
C |
Model-dependent sample |
B |
D |
Quota sampling |
E |
F |
Convenience sampling |
G |
H |
Snowball sampling |
I |
J |
Peer nomination |
K |
L |
\[ D^2(\hat{\theta}) = \frac{SE(\hat{\theta})^2_{complex}}{SE(\hat{\theta})^2_{srs}} = \frac{var(\hat{\theta})_{complex}}{var(\hat{\theta})_{srs}} \]
\[ n_{eff} = \frac{n_{complex}}{d^2(\hat{\theta})} \]
discwt
field for national estimatessummary(lm(los~age, data=cdiff))
##
## Call:
## lm(formula = los ~ age, data = cdiff)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.19 -7.12 -3.98 2.27 349.01
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.190744 0.187955 75.50 <0.0000000000000002 ***
## age -0.043275 0.002687 -16.11 <0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.94 on 73264 degrees of freedom
## Multiple R-squared: 0.003528, Adjusted R-squared: 0.003514
## F-statistic: 259.4 on 1 and 73264 DF, p-value: < 0.00000000000000022
library('survey')
cdiff.design <- svydesign(ids = ~hospid, data = cdiff, weights = ~discwt, strata = ~nis_stratum, nest=TRUE)
summary(svyglm(los~age, design=cdiff.design))
##
## Call:
## svyglm(formula = los ~ age, design = cdiff.design)
##
## Survey design:
## svydesign(ids = ~hospid, data = cdiff, weights = ~discwt, strata = ~nis_stratum,
## nest = TRUE)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.95231 0.55033 25.353 < 0.0000000000000002 ***
## age -0.04657 0.00637 -7.311 0.000000000000627 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 180.579)
##
## Number of Fisher Scoring iterations: 2
SELECT *
FROM nis
WHERE nis.dx1 = '00845'
OR nis.dx2 = '00845'
OR nis.dx3 = '00845'
OR nis.dx4 = '00845'
OR nis.dx5 = '00845'
OR nis.dx6 = '00845'
OR nis.dx7 = '00845'
OR nis.dx8 = '00845'
OR nis.dx9 = '00845'
OR nis.dx10 = '00845'
OR nis.dx11 = '00845'
OR nis.dx12 = '00845'
OR nis.dx13 = '00845'
OR nis.dx14 = '00845'
OR nis.dx15 = '00845'
OR nis.dx16 = '00845'
OR nis.dx17 = '00845'
OR nis.dx18 = '00845'
OR nis.dx19 = '00845'
OR nis.dx20 = '00845'
OR nis.dx21 = '00845'
OR nis.dx22 = '00845'
OR nis.dx23 = '00845'
OR nis.dx23 = '00845'
OR nis.dx25 = '00845'
OR nis.dx26 = '00845'
OR nis.dx27 = '00845'
OR nis.dx28 = '00845'
OR nis.dx29 = '00845'
OR nis.dx30 = '00845'
readmitted ~ hosp_hcontrl_govt +
hosp_hcontrl_priv_np +
hosp_urcat4 +
hosp_ur_teach_metro +
hosp_ur_teach_metro_teaching +
hosp_bedsize +
female +
acute_kidney_failure +
chronic_kidney_disease2 +
chronic_kidney_disease3 +
chronic_kidney_disease4 +
chronic_kidney_disease5 +
chronic_kidney_disease6 +
chronic_kidney_disease_unk +
renal_failure_unspecified